ASCENDS Lidar:

Acceleration and Demonstration of Key Space Lidar Technologies

PI: Jim Abshire, NASA GSFC

<u>Objective</u>

- Enable space lidar for simultaneous measurements of CO_2 , O_2 , and range, using lasers at 1572 and 765 nm
 - < 1 ppmv accuracy in ~100 km along track sample
 - Bias < 0.5 ppm (one year after launch)
- Demonstrate capabilities to:
 - Measure during day and night over all surfaces
 - Measure precisely through thin clouds and aerosols
 - Meet the ASCENDS science requirements
- Accelerate development of ASCENDS space lidar by developing key lidar components needed for space: step-locked laser oscillator, laser amplifier, sensitive detector
- \cdot Demonstrate space-like $CO_{\rm 2}$ measurements using new lidar components

Accomplishments

- Developed technologies needed for scaling airborne CO2 Sounder lidar to space:
 - Rapidly tuned wavelength-locked laser seed source (GSFC) (8 to 30 wavelengths/line) (TRLout= 5)
 - Highly sensitive HgCdTe APD detector (DRS/RSTA): >70% QE, Gain~900, NEP ~0.1 FW/Hz^{1/2} (a record), spectral response 0.4 to 4 μm, successful proton radiation test: (TRL_{out}= 5)
 - Demonstrated fiber laser power amplifier stages with space-needed power (Fibertek) (TRL_{out}= 4)
- \cdot Demonstrated improved airborne CO_2 and O_2 measurements from 3-12 km:
 - Participated in 2011, 2013, 2014 ASCENDS airborne campaigns (~40 hours flight time/campaign)
 - CO₂ measurements over all relevant surfaces (desert, forests, mountains, oceans, snow, crops). System biases were < 1.2 ppm. Most measurement precisions were < 2 ppm; precision over desert = 0.9 ppm.
 - Demonstrated 1st "cloud slicing" using column measurements to cloud tops to enhance solving for surface fluxes
- \cdot Demonstrated airborne O_2 column lidar measurements with precision < 7 mbar

Co-Is/Partners: Haris Riris, Randy Kawa, Xiaoli Sun, Jeff Chen, Tony Yu, GSFC; Graham Allan, Sigma; Alex Betin, Raytheon; Jeff Beck, DRS TRL_{in}= 3 TRL_{out}= 4

