

Advanced Gradiometer for Earth Gravity Measurements

PI: Nan Yu, JPL

<u>Objective</u>

- Upgrade the terrestrial atomic gravity gradiometer prototype under previous development to advance the technology that enables high-spatial resolution measurements of time-varying gravity from a single satellite
- Verify the atomic gradiometer technology through
 - achieving beyond-the-state-of-the-art performance with the terrestrial instrument
 - testing space operation mode in laboratory simulated microgravity
 - conducting error budget analysis for an atomic gradiometer measurement system in space

Accomplishments

- Designed and built a transportable gravity gradiometer instrument, and demonstrated its measurement sensitivity of 40 E/Hz^{1/2}. This performance is comparable to the best ground-based gradiometers' performance reported in literature.
- Validated the instrument gravity gradient measurement performance with modulation of a 33kg test mass.
- Verified the microgravity operation mode in atomic cloud releasing and detection with no expected degradation of instrument signal-to-noise ratio and performance.
- Completed the instrument error budget analysis and the gravity measurement recovery simulations. Results indicated that the
 instrument sensitivity in microgravity space environment would reach 1 E/Hz^{1/2}.
- Developed a compact, high-flux 2-dimensional magneto-optical trap subsystem with a high production efficiency of greater than 1x10⁹ cold atoms when applying 20 mW laser power.
- Developed a closed loop measurement approach with 4-5 times better sensitivity than conventional ellipse fitting scheme.

Co-Is/Partners: Jim Kohel, Robert Thompson, Xiaoping Wu, JPL

 $\mathsf{TRL}_{\mathsf{in}} = 4$ $TRL_{out} = 5$

