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•  Demonstrated SciSpark capability for significant performance improvement (greater than 100 times) for MCC extreme weather event 
Tera scale search and analysis from months to hours. 

•  Designed SciSpark 2.0 Application Programming Interface to support in-memory analytics and provenance support. 
•  Prototyped and demonstrated interactive (Apache Zeppelin based) notebooks to couple visualizations and analysis. 
•  Delivered two Spark-based implementations of iterative scientific algorithms – Mesoscale Convective Complexes (MCC) Search and 

Parallel Probably Density Function (PDF) clustering. 
•  Developed three-course curriculum/training in SciSpark given at ESIP Summer 2016 meeting. 
•  Software available on Github, under Apache License version 2, enabling community contribution, and sustainability. 
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1.2.1 Extract, Transform and Load (ETL)  

Climate model output and remote sensing data will be ingested into SciSpark using the 
Extract, Transform and Load (ETL) paradigm [34]. In this paradigm, data is extracted from other 
sources, remote, or local, transformed in some fashion e.g., converted from one 
latitude/longitude grid to another; reformatted from HDF to NetCDF; validated using the Climate 
Model Output Rewriter [14], etc. and then loaded into a database or big data store. In this case 
we will load the data both into Apache Hadoop Distributed Filesystem (HDFS) and into Shark 
[37], the SQL database built using Spark shown in the right periphery of Figure 4.  

We will use the Apache OODT technology and the Wings workflow technology [32] to 
implement ETL. Our proposal team includes the progenitors of OODT and Wings and we are 
highly experienced using them in the ETL process. We have recent experience funded via the 
DARPA XDATA big data initiative [35] using OODT and Wings to ETL semi-structured 
(JSON), unstructured (free text) and remote sensing data (LIDAR) [36, 41] and broader 
experience performing ETL using OODT and Wings in NASA remote sensing [30], cancer 
informatics at the NCI [38], and in radio astronomy in the context of the Square Kilometre Array 
(SKA) instrument precursors [39]. We have already prototyped OODT- and Wings-based ETL 
for climate model output and remote sensing data on the RCMES and CMAC efforts. 

SciSpark will use the RCMES and CMAC extractors for on-demand loading of data from 
OPeNDAP and w10n URLs. These URLs describe individual measurements and their associated 
arrays in specific remote files without having to download the entire file to get the data. An 
OPeNDAP URL (similar to a w10n URL) of monthly rain from NASA TRMM may resemble: 

 
Figure 4. The overall SciSpark architecture. 
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model skill varies strongly for metrics. UC and UCT that

exhibit the largest bias (Fig. 2k) also yield large RMSE

(Fig. 2l); however, DMI, which shows relatively small
bias, is one of the two that show the largest RMSE. All

RCMs also consistently yield higher skill in simulating

precipitation distribution over land surfaces for winter than
for summer (Fig. 3a).

The ENS bias (Fig. 4a) is characterized by wet (dry)

biases in the climatologically dry (wet) regions. This indi-
cates a weakness in representing the precipitation contrast

across the African landscape that would have deleterious

effects in representing everything from regional atmospheric
circulation to the coupling with land and vegetation pro-

cesses. To consider model biases in relation to typical

anomalous conditions, we normalize the ENS bias by the
interannual variability of the CRU precipitation over the

18-year period (rt). The ± 1rt range approximately coin-

cides with the 68 % CI. In this case, the values remain
within the ±1 range over most of Africa (Fig. 4b), i.e., the

magnitude of the ENS bias is less than the local interannual

variability. To consider the systematic bias relative to the
expected precipitation values, the ENS bias is normalized by

the CRU annual-mean value (Fig. 4c). In this case, the

normalized ENS bias is \20 % of the CRU in the region
between 20!S and 10!N. Both normalized ENS biases are

large in the dry/marginally-dry regions including northern

Sahara, eastern Horn of Africa, and Arabia Peninsula.
Figure 5 presents the precipitation annual cycle (Lieb-

mann et al. 2012) in 10 out of the 21 sub-regions; two in
the northern Africa coast (Fig. 5a, f), four in the west

Africa (Fig. 5b–e) and four in the east Africa (Fig. 5g–j)

regions. An annual cycle plot for the entire 21 sub-regions
is presented in Supplemental Figure 2a, b (http://rcmes.jpl.

nasa.gov/publications/figures/Kim-Climate_Dynamics-2012

). Two green lines in Fig. 5a–j represent the ±1rt range

about the observation. All RCMs well simulate the sea-

sonality of precipitation, at least in its phase. Despite large

inter-RCM variations, ENS agrees reasonably with CRU in
most sub-regions. For the Mediterranean regions (Figs. 5a,

f), ENS is within the ±1rt range for most of the year. ENS

also closely agrees with CRU, both in seasonality and
magnitude, in most of the western Africa regions. Fidelity

of ENS in these east Africa regions is generally lower than

in the west coast region. In the Ethiopian Highlands and
Eastern Horn of Africa, all RCMs overestimate CRU and

ENS is outside the ±1rt range throughout a year. The

RCM skill in simulating the annual cycle is summarized for
all sub-regions using portrait diagrams. The normalized

RMSE (Fig. 5k) reveals that model skill varies according

to regions. RMSE remains\70 % of CRU for most RCMs
in most sub-regions except the northeastern Africa (eastern

Horn of Africa) and eastern Arabia Peninsula (R10, R20,

R21), coastal Western Sahara (R05), and eastern inland
Sahara (R06) regions. Most RCMs also simulate the phase

of the annual cycle measured by the correlation coeffi-

cients, reasonably well except for R10, R20, and R21
where RMSE is also large (Fig. 5l). Results in Fig. 5 show

that RCM skill varies according to regional climate as these

regions of poor performance are characterized by arid cli-
mate. Among these, the regions in northeastern Africa and

eastern Arabia Peninsula (regions 10, 20, and 21) are

affected by the Arabian-Sea monsoon (e.g., Segele et al.
2009). This may imply that in addition to shortcomings in

model physics for simulating precipitation in these dry
regions, the seasonal moisture flux from the Indian Ocean

associated with the movement of the Indian Ocean ITCZ

(Liebmann et al. 2012) may not be well represented via the
lateral boundary forcing. Evaluation of the large-scale

forcing will be subjects for future studies. Figure 5k, l also

show that ENS is consistently among the best performers.

(a) Precipitation (b) Temperature

Fig. 3 The standardized deviations and spatial pattern correlations between the CRU data and the individual model results for the boreal summer
(June–July–August; blue) and winter (December–January–February; red) over the land surface: a precipitation and b temperature
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eastern regions. This west-to-east gradient is reversed in
the Southern Hemisphere (SH) subtropical region. All

RCMs simulate these observed features, but with varying

fidelity (Supplemental Figure 1; http://rcmes.jpl.nasa.gov/
publications/figures/Kim-Climate_Dynamics-2012). The

model bias (Fig. 2a–j) varies strongly among these RCMs.

It also shows systematic regional variations across all or a
majority of these RCMs. All or most RCMs generate wet

biases in South Africa and sub-Sahara (Sahel) region and

dry biases in the northwestern Sahara, northern Madagas-
car Island, southeastern Africa coast, and interior Arabia

Peninsula regions. Precipitation biases in the tropics vary

among RCMs. The spatial variation of the annual-mean
precipitation is evaluated for the mean (Fig. 2k), pattern

correlation, and standardized deviation (Fig. 2l) over the

land area. The distance between REF and individual points
in the Taylor diagram corresponds to RMSE (Taylor 2001).

All RCMs well simulate the overland-mean precipitation

amount (Fig. 2k) with typical biases \10 % of CRU,
except UC and UCT. The spatial pattern agrees closely

with CRU with correlation coefficients 0.8–0.95 (Fig. 2l).

Most RCMs overestimate the magnitude of spatial vari-
ability (standardized deviations). ENS yields smaller

RMSE than all RCMs within ENS (Fig. 2l). The measured

mm/day
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Fig. 2 The biases in the simulated annual-mean precipitation (mm/
day) against the CRU data for the individual models (a–j). The
overland-mean precipitation (k) and the spatial pattern correlations

and standardized deviations (l) with respect to the CRU data over the
land surface. The red square in (l) indicates the multi-RCM ensemble
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Extract, Transform and Load (ETL)

Sci Spark User Interface

•  Leverage Apache Spark big data infrastructure to perform 
complex model evaluation and climate metric analyses 100 
times faster than state-of-the-art file systems 

•  Provide interactive access and analysis of data for increased 
understanding of regional climate systems 

•  Enable fast processing and analysis of highly spatially and 
temporally resolved observational and model datasets by 
reducing the number of data management operations 

•  Mature the SciSpark technology by exploiting the Resilient 
Distributed Datasets (RDD) functionality enabling operational 
reuse, distributed processing, and data recovery after 
operational failures. 


