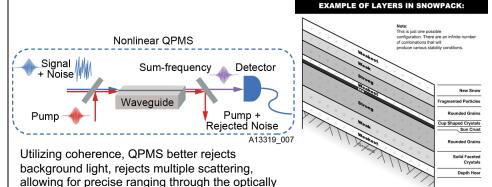


Quantum Parametric Mode Sorting (QPMS) Lidar for Snowpack Characterization

PI: Carl Weimer, Ball Aerospace


Objective

- Develop a lidar that takes advantage of quantum technologies to profile and characterize 20x deeper snowpack to better understand layering and possible grain characterization
 - QPMS methods improve on direct detection lidar in increased SNR, and improved background (sunlight) rejection
- Demonstrate long range precision (mm) ranging from natural scenes, with the promise of improved topographic mapping of snow scenes and coastal bathymetry
- Design and evaluate a multi-spectral multi-polarization lidar that extends CALIPSO-like capabilities to snow and water scenes for both day and night measurement
- Develop and Validate the use of applying diffusion theory to multiple scattered light to estimate snow depth and compare with QPMS results
- Begin working the path to space implementation

<u>Approach</u>

- Use QPMS detection with Time-Frequency laser modes to perform ranging measurements
- Translate demonstrated techniques at 1550 nm to the visible 515 nm to allow QPMS work with snow
- Develop a QPMS system to detect visible (515nm) backscatter
- Perform controlled laboratory testing of snow scenes at Ball Aerospace
- Intercompare lidar results with penetrometer instruments to understand the snow depth and possible information on snow water equivalent grain size, density, and layers
- Package and qualify new SPAD detectors for space

Co-Is/Partners: Jennifer Lee, Ball; Y. Huang, K. Stamnes, Y. M. Sua, Stevens; Y. Hu, NASA LaRC; HP Marshall, Boise State; X. Zheng, Brandon Marshall Arizona; Jason Stoker, USGS

The complexity of snowpacks requires a new approach with higher resolution.

Key Milestones

dense snowpack, and turbid waters for bathymetry.

 Complete design of 515 nm QPMS Tx/Rx 	05/22
 Procure optical subsystems 	07/22
 Fabricate upconversion device at CUNY 	08/22
 Complete Lidar Receiver Architecture/ROM 	01/23
 Assemble QPMS lidar system 	03/23
 Complete functional testing at Stevens 	04/23
 Kick-off SPAD detector qualification 	04/23
Complete system level testing at Ball Aerospace	08/23
 Complete SPAD Packaging for Space 	09/23
 Complete Snow Testing 	03/24
 Complete Path to Space and Radiometry 	04/24
 Complete Water Testing at Ball Aerospace 	06/24
 Complete Theory/Validation of Multiple Scatter 	09/24

 $TRL_{in} = 2 TRL_{current} = 3$

